Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.928
1.
Molecules ; 29(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38611853

Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.


Photochemotherapy , Drug Carriers , Fluorometry , Gold/therapeutic use , Photothermal Therapy
2.
ACS Appl Mater Interfaces ; 16(15): 18551-18563, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38564314

High levels of reactive oxygen species (ROS) are known to play a critical role in the secondary cascade of spinal cord injury (SCI). The scavenging of ROS has emerged as a promising approach for alleviating acute SCI. Moreover, identifying the precise location of the SCI site remains challenging. Enhancing the visualization of the spinal cord and improving the ability to distinguish the lesion site are crucial for accurate and safe treatment. Therefore, there is an urgent clinical need to develop a biomaterial that integrates diagnosis and treatment for SCI. Herein, ultra-small-sized gold nanodots (AuNDs) were designed for dual-mode imaging-guided precision treatment of SCI. The designed AuNDs demonstrate two important functions. First, they effectively scavenge ROS, inhibit oxidative stress, reduce the infiltration of inflammatory cells, and prevent apoptosis. This leads to a significant improvement in SCI repair and promotes a functional recovery after injury. Second, leveraging their excellent dual-mode imaging capabilities, the AuNDs enable rapid and accurate identification of SCI sites. The high contrast observed between the injured and adjacent uninjured areas highlights the tremendous potential of AuNDs for SCI detection. Overall, by integrating ROS scavenging and dual-mode imaging in a single biomaterial, our work on functionalized AuNDs provides a promising strategy for the clinical diagnosis and treatment of SCI.


Gold , Spinal Cord Injuries , Humans , Reactive Oxygen Species , Gold/therapeutic use , Spinal Cord Injuries/drug therapy , Oxidative Stress , Biocompatible Materials/therapeutic use
3.
J Colloid Interface Sci ; 663: 644-655, 2024 Jun.
Article En | MEDLINE | ID: mdl-38430834

Triple-negative breast cancer (TNBC) is insensitive to conventional therapy due to its highly invasive nature resulting in poor therapeutic outcomes. Recent studies have shown multiple genes associated with ferroptosis in TNBC, suggesting an opportunity for ferroptosis-based treatment of TNBC. However, the efficiency of present ferroptosis agents for cancer is greatly restricted due to lack of specificity and low intracellular levels of H2O2 in cancer cells. Herein, we report a nano-theranostic platform consisting of gold (Au)-iron oxide (Fe3O4) Janus nanoparticles (GION@RGD) that effectively enhances the tumor-specific Fenton reaction through utilization of near-infrared (NIR) lasers, resulting in the generation of substantial quantities of toxic hydroxyl radicals (•OH). Specifically, Au nanoparticles (NPs) converted NIR light energy into thermal energy, inducing generation of abundant intracellular H2O2, thereby enhancing the iron-induced Fenton reaction. The generated •OH not only lead to apoptosis of malignant tumor cells but also induce the accumulation of lipid peroxides, causing ferroptosis of tumor cells. After functionalizing with the activity-targeting ligand RGD (Arg-Gly-Asp), precise synergistic treatment of TNBC was achieved in vivo under the guidance of Fe3O4 enhanced T2-weighted magnetic resonance imaging (MRI). This synergistic treatment strategy of NIR-enhanced ferroptosis holds promise for the treatment of TNBC.


Ferroptosis , Metal Nanoparticles , Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Gold/therapeutic use , Hydrogen Peroxide , Cell Line, Tumor , Neoplasms/drug therapy , Oligopeptides
4.
ACS Appl Mater Interfaces ; 16(10): 12217-12231, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480984

Psoriasis, a prevalent chronic inflammatory skin ailment affecting approximately 2-3% of the global population, is characterized by persistent symptoms. Dexamethasone, a primary corticosteroid for treating psoriasis, demonstrates notable efficacy; however, its limited skin permeation results in documented adverse effects. To address this, the presented study employed a novel strategy to conjugate gold nanorod and dexamethasone and evaluate their potential for mitigating psoriatic inflammation using an imiquimod-induced mouse model and human skin cells. Our findings revealed enhanced cutaneous penetration of gold nanorod and dexamethasone conjugates compared with that of dexamethasone, owing to superior skin penetration. Gold nanorod and dexamethasone conjugates demonstrated an optimal pharmacological impact at minimal dosages without toxicity during extended use. To further enhance the effectiveness of gold nanorod and dexamethasone conjugates, 808 nm near-infrared laser irradiation, which reacts to gold, was additionally applied to achieve thermal elevation to expedite drug skin penetration. Supplementary laser irradiation at 808 nm significantly ameliorated psoriatic symptoms following deep gold nanorod and dexamethasone conjugates penetration. This corresponded with restored peroxisome proliferator-activated receptor-γ levels and accelerated dexamethasone release from the gold nanorod and dexamethasone conjugates complex. These findings highlight the potential of gold nanorod and dexamethasone conjugates to enhance drug penetration through dermal layers, thereby aiding psoriasis treatment. Moreover, its compatibility with photothermal therapy offers prospects for novel therapeutic interventions across various inflammatory skin disorders.


Nanotubes , Psoriasis , Animals , Mice , Humans , Photothermal Therapy , Gold/pharmacology , Gold/therapeutic use , Psoriasis/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Inflammation/drug therapy
5.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article En | MEDLINE | ID: mdl-38397037

This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.


Alzheimer Disease , Metal Nanoparticles , Animals , Neuroprotection , Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Alzheimer Disease/drug therapy , Models, Animal
6.
Eur J Med Chem ; 268: 116218, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38387331

Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.


Cyanates , Metal Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Gold/therapeutic use , Neoplasms/drug therapy , Radiation-Sensitizing Agents/pharmacology , Thioredoxins
7.
Int J Hyperthermia ; 41(1): 2301035, 2024.
Article En | MEDLINE | ID: mdl-38318887

Anisotropic gold nanostructures have gained increased attention for biomedical applications because of their remarkable optical properties. An emerging type of gold nanostructure-gold nanobipyramids (AuNBP)-has been shown to exhibit superior absorption properties compared to conventionally used gold nanoparticles, which makes them attractive for photothermal applications. We generated a high-shape-purity dispersion of AuNBP using a seed-mediated method and embedded them as photothermal conversion agents in a silk fibroin matrix to investigate their efficacy in photothermal sealing of incisional wounds in immunocompetent mice. These AuNBP-doped laser-activated sealants, or AuNBP-LASE were able to absorb near-infrared laser energy and convert it to heat, thereby inducing transient hyperthermia in the wound and the surrounding tissue. This photothermal conversion facilitated rapid sealing of the skin tissue by the AuNBP-LASE, which resulted in faster functional recovery of skin barrier function compared to nylon sutures at the early stages of repair. Further, the biomechanical properties of the healing skin closed with AuNBP-LASE those of intact skin more rapidly compared to incisions approximated with sutures. Histology studies indicated higher penetration of the LASE within the volume of the incision in skin tissue, lower scab formation, and a similar epidermal gap compared to conventional suturing. These results demonstrate that AuNBP-LASEs can be effective as wound approximation devices for photothermal sealing.


Hyperthermia, Induced , Metal Nanoparticles , Mice , Animals , Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Skin , Lasers
8.
J Biophotonics ; 17(4): e202300322, 2024 Apr.
Article En | MEDLINE | ID: mdl-38221797

We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser. Changes in the optical properties of the studied tissues in the spectral range 350-2200 nm under plasmonic photothermal therapy (PPT) were studied. Analysis of the observed changes in the absorption bands of water and hemoglobin made it possible to estimate the depth of thermal damage to the tumor. A significant decrease in absorption peaks was observed in the spectrum of the upper peripheral part and especially the tumor capsule. The obtained changes in the optical properties of tissues under laser irradiation can be used to optimize laboratory and clinical PPT procedures.


Laser Therapy , Nanotubes , Neoplasms , Rats , Animals , Male , Photothermal Therapy , Gold/therapeutic use , Lasers, Semiconductor
9.
Clin Exp Med ; 24(1): 8, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38240834

Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.


Metal Nanoparticles , Neoplasms , Humans , Drug Delivery Systems/methods , Theranostic Nanomedicine/methods , Gold/therapeutic use , Neoplasms/diagnosis , Neoplasms/drug therapy
10.
Syst Rev ; 13(1): 39, 2024 01 25.
Article En | MEDLINE | ID: mdl-38273391

BACKGROUND: Oral mucositis remains a significant complication during cancer therapy with no effective treatment. Gold nanoparticles offer anti-inflammatory, antioxidant properties with low toxicity. This study systematically reviews the literature assessing gold nanoparticles in the management of oral mucositis in animal models. METHODS: A literature search was undertaken using MEDLINE, Embase, PubMed, and Web of Science databases, using the format for Systematic Review Centre for Laboratory Animal Experimentation. Prior to the review, the protocol was registered in the systematic review register, PROSPERO (registration no. CRD42021272169). Outcome measures included ulceration, histopathological scores, inflammatory mediators, microbial growth, and pain. Study quality was analysed by SYRCLE risk-of-bias tool. RESULTS: Only one study met the inclusion criteria, documenting reduction in ulceration, inflammatory, and oxidative biomarkers. Exposure to AuNPs prevented inflammatory response induced by 5-fluorouracil in oral mucosa of hamsters. However, a high risk of bias necessitates further research. CONCLUSION: This review identifies a potential therapeutic strategy for prevention and management of oral mucositis. It also provides future direction for gold nanoparticle research in oral mucositis; however, there is lack of sufficient evidence to derive any conclusion. Research with standardized parameters including nanoparticle size, capping agent, surface charge, and appropriate oral mucositis animal models will establish risk-benefit balance and margin of safety for therapeutic use of gold nanoparticles for oral mucositis.


Metal Nanoparticles , Neoplasms , Stomatitis , Animals , Gold/therapeutic use , Neoplasms/therapy , Metal Nanoparticles/therapeutic use , Stomatitis/drug therapy , Stomatitis/prevention & control , Mouth Mucosa
11.
Microbiol Spectr ; 12(2): e0296823, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38206030

Auranofin, an FDA-approved drug for rheumatoid arthritis, has emerged as a promising antiparasitic medication in recent years. The gold(I) ion in auranofin is postulated to be responsible for its antiparasitic activity. Notably, aurothiomalate and aurothioglucose also contain gold(I), and, like auranofin, they were previously used to treat rheumatoid arthritis. Whether they have antiparasitic activity remains to be elucidated. Herein, we demonstrated that auranofin and similar derivatives, but not aurothiomalate and aurothioglucose, inhibited the growth of Toxoplasma gondii in vitro. We found that auranofin affected the T. gondii biological cycle (lytic cycle) by inhibiting T. gondii's invasion and triggering its egress from the host cell. However, auranofin could not prevent parasite replication once T. gondii resided within the host. Auranofin treatment induced apoptosis in T. gondii parasites, as demonstrated by its reduced size and elevated phosphatidylserine externalization (PS). Notably, the gold from auranofin enters the cytoplasm of T. gondii, as demonstrated by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).IMPORTANCEToxoplasmosis, caused by Toxoplasma gondii, is a devastating disease affecting the brain and the eyes, frequently affecting immunocompromised individuals. Approximately 60 million people in the United States are already infected with T. gondii, representing a population at-risk of developing toxoplasmosis. Recent advances in treating cancer, autoimmune diseases, and organ transplants have contributed to this at-risk population's exponential growth. Paradoxically, treatments for toxoplasmosis have remained the same for more than 60 years, relying on medications well-known for their bone marrow toxicity and allergic reactions. Discovering new therapies is a priority, and repurposing FDA-approved drugs is an alternative approach to speed up drug discovery. Herein, we report the effect of auranofin, an FDA-approved drug, on the biological cycle of T. gondii and how both the phosphine ligand and the gold molecule determine the anti-parasitic activity of auranofin and other gold compounds. Our studies would contribute to the pipeline of candidate anti-T. gondii agents.


Arthritis, Rheumatoid , Phosphines , Toxoplasma , Toxoplasmosis , Humans , Auranofin/pharmacology , Auranofin/therapeutic use , Gold/pharmacology , Gold/therapeutic use , Ligands , Aurothioglucose/pharmacology , Aurothioglucose/therapeutic use , Arthritis, Rheumatoid/drug therapy , Gold Sodium Thiomalate/pharmacology , Gold Sodium Thiomalate/therapeutic use , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use
12.
J Med Chem ; 67(3): 1982-2003, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38261008

Induction of immunogenic cell death (ICD) and activation of the cyclic GMP-AMP synthase stimulator of interferon gene (cGAS-STING) pathway are two potent anticancer immunotherapeutic strategies in hepatocellular carcinoma (HCC). Herein, 12 liver- and mitochondria-targeting gold(I) complexes (9a-9l) were designed and synthesized. The superior complex 9b produced a considerable amount of reactive oxygen species (ROS) and facilitated DNA excretion, the ROS-induced ICD and DNA activated the cGAS-STING pathway, both of which evoked an intense anticancer immune response in vitro and in vivo. Importantly, 9b strongly inhibited tumor growth in a patient-derived xenograft model of HCC. Overall, we present the first case of simultaneous ICD induction and cGAS-STING pathway activation within the same gold-based small molecule, which may provide an innovative strategy for designing chemoimmunotherapies for HCC.


Carcinoma, Hepatocellular , Gold , Immunogenic Cell Death , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , DNA/metabolism , Immunogenic Cell Death/drug effects , Immunotherapy , Interferons , Liver Neoplasms/drug therapy , Mitochondria/metabolism , Nucleotidyltransferases/metabolism , Reactive Oxygen Species , Signal Transduction , Gold/pharmacology , Gold/therapeutic use , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
14.
Pharmacol Rep ; 76(1): 127-139, 2024 Feb.
Article En | MEDLINE | ID: mdl-38082190

BACKGROUND: Chronic inflammation in the course of inflammatory bowel disease may result in colon cancer, or colitis-associated colorectal cancer (CACRC). It is well established that CACRC is associated with oxidative stress and secretion of multiple pro-inflammatory cytokines, e.g. tumor necrosis factor-α. Recently, we proved that the administration of gold(III) complexes resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the antitumor effect of a novel series of gold(III) complexes: TGS 121, 404, 512, 701, 702, and 703. MATERIALS: Analyzed gold(III) complexes were screened in the in vitro studies using colorectal cancer and normal colon epithelium cell lines, SW480, HT-29, and CCD 841 CoN, and in vivo, in the CACRC mouse model. RESULTS: Of all tested complexes, TGS 121, 404, and 702 exhibited the strongest anti-tumor effect in in vitro viability assay of colon cancer cell lines and in in vivo CACRC model, in which these complexes decreased the total number of colonic tumors and macroscopic score. We also evidenced that the mechanism of action was linked to the enzymatic antioxidant system and inflammatory cytokines. CONCLUSIONS: TGS 121, 404, and 702 present anti-tumor potential and are an attractive therapeutic option for colorectal cancer.


Colitis , Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Gold/pharmacology , Gold/metabolism , Gold/therapeutic use , Colitis/complications , Colitis/drug therapy , Colitis/chemically induced , Colon , Colonic Neoplasms/metabolism , Cytokines/metabolism , HT29 Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Dextran Sulfate/pharmacology , Mice, Inbred C57BL
15.
J Mater Chem B ; 12(3): 552-576, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38116755

Cancer poses a formidable challenge, necessitating improved treatment strategies. Metal-based drugs and nanotechnology offer new hope in this battle. Versatile gold complexes and functionalized gold nanoparticles exhibit unique properties like biologically inert behaviour, outstanding light absorption, and heat-conversion abilities. These nanoparticles can be finely tuned for drug delivery, enabling precise and targeted cancer therapy. Their exceptional drug-loading capacity and low toxicity, stemming from excellent stability, biocompatibility, and customizable shapes, make them a promising option for enhancing cancer treatment outcomes and improving diagnostic imaging. Leveraging these attributes, researchers can design more effective and targeted cancer therapeutics. The potential of functionalized gold nanoparticles to advance cancer treatment and diagnostics holds a promising avenue for further exploration and development in the fight against cancer. This review article delves into the finely tuned attributes of functionalized gold nanoparticles, unveiling their potential for application in drug delivery for precise and targeted cancer therapy.


Metal Nanoparticles , Neoplasms , Humans , Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Drug Delivery Systems/methods , Neoplasms/drug therapy , Nanotechnology/methods
16.
J Colloid Interface Sci ; 658: 301-312, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38109817

Ultrasmall platinum (Pt) nanozymes are used for catalytic therapy and oxygen (O2)-dependent photodynamic therapy (PDT) by harnessing the dual-enzyme activities of catalase (CAT) and peroxidase (POD). However, their applications as nanocatalysts are limited due to their low catalytic activity. Herein, we constructed a photothermal-promoted bimetallic nanoplatform (AuNTP@Pt-IR808) by depositing ultrasmall Pt nano-islands and modifying 1-(5-Carboxypentyl)-2-(2-(3-(2-(1-(5-carboxypentyl)-3,3-dimethylindolin-2-ylidene)ethylidene)-2-chlorocyclohex-1-en-1-yl)vinyl)-3,3-dimethyl-3H-indol-1-ium bromide (IR808) on gold nanotetrapod (AuNTP) with CAT/POD activities to enhance PDT/catalytic therapy. In the tumor microenvironment, the ultrasmall Pt can catalyze endogenous hydrogen peroxide (H2O2) to produce O2, relieving tumor hypoxia and enhancing the PDT performance. Moreover, AuNTP integration into the bimetallic nanoplatform showed good electron transfer properties and promoted the POD activity of ultrasmall Pt. Importantly, AuNTP@Pt-IR808 possessed higher photothermal conversion performance than single AuNTPs, which enhanced photothermal therapy (PTT). It also accelerated the CAT/POD dual-enzyme activities, and promoted the generation of singlet oxygen (1O2) and hydroxyl radical (OH). By enhancing the performances of PTT/PDT/catalytic therapy, the developed AuNTP@Pt-IR808 nanoplatform demonstrated good antitumor efficacy against breast cancer.


Metal Nanoparticles , Neoplasms , Photochemotherapy , Humans , Cell Line, Tumor , Gold/pharmacology , Gold/therapeutic use , Hydrogen Peroxide , Neoplasms/drug therapy , Oxygen , Platinum/pharmacology , Tumor Microenvironment , Nanoparticles/chemistry
17.
Biomed Pharmacother ; 170: 116010, 2024 Jan.
Article En | MEDLINE | ID: mdl-38128183

Triple-negative breast cancer (TNBC) is associated with metabolic heterogeneity and poor prognosis with limited treatment options. New treatment paradigms for TNBC remains an unmet need. Thus, therapeutics that target metabolism are particularly attractive approaches. We previously designed organometallic Au(III) compounds capable of modulating mitochondrial respiration by ligand tuning with high anticancer potency in vitro and in vivo. Here, we show that an efficacious Au(III) dithiocarbamate (AuDTC) compound induce mitochondrial dysfunction and oxidative damage in cancer cells. Efficacy of AuDTC in TNBC mouse models harboring mitochondrial oxidative phosphorylation (OXPHOS) dependence and metabolic heterogeneity establishes its therapeutic potential following systemic delivery. This provides evidence that AuDTC is an effective modulator of mitochondrial respiration worthy of clinical development in the context of TNBC. ONE SENTENCE SUMMARY: Metabolic-targeting of triple-negative breast cancer by gold anticancer agent may provide efficacious therapy.


Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Oxidative Phosphorylation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Gold/pharmacology , Gold/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
18.
J Transl Med ; 21(1): 889, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38062495

Osteoporosis is currently the most prevalent bone disorder worldwide and is characterized by low bone mineral density and an overall increased risk of fractures. To treat osteoporosis, a range of drugs targeting bone homeostasis have emerged in clinical practice, including anti-osteoclast agents such as bisphosphonates and denosumab, bone formation stimulating agents such as teriparatide, and selective oestrogen receptor modulators. However, traditional clinical medicine still faces challenges related to side effects and high costs of these types of treatments. Nanomaterials (particularly gold nanoparticles [AuNPs]), which have unique optical properties and excellent biocompatibility, have gained attention in the field of osteoporosis research. AuNPs have been found to promote osteoblast differentiation, inhibit osteoclast formation, and block the differentiation of adipose-derived stem cells, which thus is believed to be a novel and promising candidate for osteoporosis treatment. This review summarizes the advances and drawbacks of AuNPs in their synthesis and the mechanisms in bone formation and resorption in vitro and in vivo, with a focus on their size, shape, and chemical composition as relevant parameters for the treatment of osteoporosis. Additionally, several important and promising directions for future studies are also discussed, which is of great significance for prevention and treatment of osteoporosis.


Bone Density Conservation Agents , Metal Nanoparticles , Osteoporosis , Humans , Gold/therapeutic use , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Metal Nanoparticles/therapeutic use , Osteoporosis/drug therapy , Teriparatide/therapeutic use
19.
Article En | MEDLINE | ID: mdl-38082956

In the present work, we implemented a computational framework of in vivo gold nanorod (GNR)-enhanced photothermal therapy (PTT) for tumor treatment. The temperature-dependent thermophysical properties of biological tissue and the optical properties of both GNRs and the biological media were included. The latter were modulated during the treatment simulation to account for their variation, from the native to the coagulated state. The contribution of tissue injury-dependent blood perfusion was also considered. The developed model allowed for the estimation of temperature distribution during the photothermal procedure at different procedural settings and amounts of GNRs embedded in the tumor region (i.e., 12.5 µg, 25 µg, and 50 µg). Furthermore, the influence of GNRs on thermal injury, estimated with different damage models, was assessed. The inclusion of GNRs in the tumor entailed an increment of maximum tissue temperature, and faster heating kinetics, as witnessed by the lower time needed to reach complete thermal damage at the tumor center. The percentage of tumor thermal damage evaluated at the end of the simulated treatment was 48%, 69%, and 90%, for PTT in the presence of 12.5 µg, 25 µg, and 50 µg of GNRs, respectively.Clinical Relevance-This establishes that simulation-based tools, modeling the tissue properties variation during the photothermal treatment, can serve as promising preplanning platforms for nanoparticle-assisted light therapies.


Nanotubes , Neoplasms , Humans , Photothermal Therapy , Gold/therapeutic use , Phototherapy , Neoplasms/drug therapy
20.
Int J Nanomedicine ; 18: 7677-7693, 2023.
Article En | MEDLINE | ID: mdl-38111846

Purpose: Glioblastoma is a highly aggressive brain tumor with universally poor outcomes. Recent progress in immune checkpoint inhibitors has led to increased interest in their application in glioblastoma. Nonetheless, the unique immune milieu in the brain has posed remarkable challenges to the efficacy of immunotherapy. We aimed to leverage the radiation-induced immunogenic cell death to overcome the immunosuppressive network in glioblastoma. Methods: We developed a novel approach using the gold-core silica-shell nanoparticles (Au@SiO2 NPs) in combination with low-dose radiation to enhance the therapeutic efficacy of the immune checkpoint inhibitor (atezolizumab) in brain tumors. The biocompatibility, immune cell recruitment, and antitumor ability of the combinatorial strategy were determined using in vitro assays and in vivo models. Results: Our approach successfully induced the migration of macrophages towards brain tumors and promoted cancer cell apoptosis. Subcutaneous tumor models demonstrated favorable safety profiles and significantly enhanced anticancer effects. In orthotopic brain tumor models, the multimodal therapy yielded substantial prognostic benefits over any individual modalities, achieving an impressive 40% survival rate. Conclusion: In summary, the combination of Au@SiO2 NPs and low-dose radiation holds the potential to improve the clinical efficacy of immune checkpoint inhibitors. The synergetic strategy modulates tumor microenvironments and enhances systemic antitumor immunity, paving a novel way for glioblastoma treatment.


Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Silicon Dioxide/therapeutic use , Glioblastoma/drug therapy , Gold/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
...